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Summary

Reuse via secondhand markets can extend the use phase of products, thereby reducing
environmental impacts. Analyzing 500,000 listings of used Apple and Samsung smartphones
sold in 2015 and 2016 via eBay, we examine which product properties affect how long
smartphones retain market value and facilitate market-based reuse. Our results suggest that
although repairability and large memory size are typically thought to be “life extending,” in
practice they have limited impact on the current economic life span of smartphones and
their market-based reuse. In contrast, we show that brand, an intangible product property,
can extend smartphones’ economic life span by 12.5 months. Because longer economic
life spans imply extended use phases and longer life spans overall, these results illustrate
the potential of harnessing the intangible properties of products to promote sustainable
consumption.
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Introduction

With penetration rates nearing 90% in developed countries,
mobile phones today are almost ubiquitous devices (Broadband
Commission for Digital Development 2016). Yet alongside the
evident social and economic benefits gained via increased con-
nectivity and access to services (Corbett 2008; Aker and Mbiti
2010), the so-called mobile revolution has come at great envi-
ronmental cost. For example, modern mobile phones contain
over 50 different elements (O’Connor et al. 2016). These ele-
ments include conflict minerals linked to civic unrest (Moran
et al. 2015; OECD 2010), rare earths subject to supply con-
straints and depletion (Sprecher et al. 2015, 2017), and various
toxic materials (e.g., lead, arsenic) whose leakage into the nat-
ural environment has been linked to serious environmental and
public health challenges (Grant et al. 2013; Chen et al. 2011;
Zhang et al. 2012). Furthermore, although the climate change
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impacts of a single device are relatively small (e.g., 95 kilo-
grams of carbon dioxide equivalent [kgCO2e] for the iPhone 6)
(Apple Inc. 2014), in aggregate, the 1.5 billion devices sold in
2016 alone could amount to over 140 billion kgCO2e (Gartner
2017).

These environmental costs are intensified as mobile phones
have relatively short life spans (defined here as the time be-
tween initial purchase and disposal at end of life [EoL]), with
recent estimates suggesting a use phase of less than 2 years
(Geyer and Blass 2010; Wilson et al. 2017; Wieser and Tröger
2017). Some argue that products that are easy to repair may
ease environmental burdens and improve resource productivity
by prolonging the active use period (Felton and Bird 2006; van
Nes and Cramer 2005; Yu et al. 2011; Go et al. 2015; Cooper
2016; Wieser and Tröger 2017). The basic idea is that because
the production, transportation, and EoL management of each
product requires a “fixed” investment of resources and energy,
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using products longer would mean gaining more utility from the
same fixed investment (Skelton and Allwood 2013). Although
longer life spans are not always environmentally beneficial, for
products such as smartphones that require many resources up
front (i.e., the fixed investment) and few resources during use
(i.e., operational inputs), longer use times usually mean more
efficient utilization of resources overall (Allwood et al. 2012;
Frey et al. 2006; Wieser and Tröger 2017; Cooper and Gutowski
2017).

As one of the three R’s (reduce, reuse, recycle), reuse is com-
monly seen as a basic sustainability practice that can be used
to prolong a product’s use phase and lower its environmental
impacts. While reuse has existed as a market phenomenon for
centuries, in recent years, the Internet has revolutionized the
trade in preowned goods. Lowering the transaction costs of ex-
change and expanding the geographic boundaries of the trade,
online platforms such as eBay allow consumers to find secondary
buyers for their unwanted used possessions and extend their use
phases (Davies and Cunningham 2012; Thomas 2011; Lee and
Liao 2015; Ghose et al. 2006).

Over the past few years, trade in used smartphones has seen
tremendous growth. Estimates suggest that roughly 120 million
used smartphones were sold worldwide in 2016, at a total value
of $17 billion (Deloitte 2016). Growing at a rate of four to five
times higher than that of the overall smartphone market, reuse
through the secondhand market plays an increasingly important
role in extending smartphone life spans.

While sales of used smartphones could in theory cannibal-
ize sales of new smartphones, research suggests that consumers
clearly differentiate between new and used products (Abbey
et al. 2017; Abbey et al. 2015) and that it is unlikely that
displacement of new phones by used ones accrues on a 1:1
basis (Geyer and Blass 2010; Zink et al. 2014). As such, in
some cases smartphone reuse could lead to surplus consumption
and increase environmental impacts (Ovchinnikov et al. 2014;
Makov and Font Vivanco 2018). Nonetheless, even though
reuse could potentially backfire under certain economic con-
ditions, the benefits of a longer use phase are not likely to be
completely offset by such “rebound” effects. Furthermore, we ar-
gue that when consumers pay money out of pocket to purchase
used devices, this purchase is offsetting some other expendi-
ture whose environmental impacts are thus avoided (Zink et al.
2014; Makov and Font Vivanco 2018).

In their comprehensive review of the environmental impli-
cations of reuse, Cooper and Gutowski (2017) conclude that
the environmental consequences of products that can be di-
rectly reused are likely beneficial. Similarly, according to the
Ellen MacArthur Foundation, reuse that involves little repair,
remanufacturing, or alteration of products represents one of the
most environmentally beneficial paths of the circular economy
(MacArthur 2013). In addition, much like other used prod-
ucts, smartphone reuse (via access to communications) likely
has a positive impact on welfare, especially for households with
lower economic power (Gavazza et al. 2014; Raz et al. 2017). It
follows that products with longer economic life spans (defined
here as the time during which a product can be resold “as is”

via secondhand markets) are generally more sustainable than
products that lose their value faster and have shorter economic
life spans.

Repairability and Intangibles

Smartphones are known to have fast innovation cycles. Be-
cause new model releases are frequent, technological progress
and consumers’ desire for advanced functionality are commonly
viewed as the main drivers behind rapid product replacement
and short use-phase duration (Wilson et al. 2017; Wieser and
Tröger 2017). As a result, several have argued that making
phones easier to repair and update, thereby slowing their tech-
nical obsolescence, would increase their potential for reuse and
extend their use phase (Wilhelm et al. 2011; van Nes and
Cramer 2005; Benton et al. 2015).

Yet despite consumers’ proclaimed interest in repairability
(Wilhelm et al. 2011; Wieser et al. 2015; Cooper 2016), ev-
idence suggests that they might be content with product life
spans (Gnanapragasam 2017), and not genuinely interested in
fixing their devices. For example, Jacoby and colleagues (1977)
showed that consumers use minor malfunctions or physical
imperfections as justification for replacing working products.
Bellezza et al. (2017) found that consumers are more careless
with their possessions if they know an upgrade is available. Re-
latedly, the limited market success of modular phones or phones
that are specifically optimized to allow unlimited repair and up-
grades (e.g., Fairphone) challenges the notion that repairability
is a highly sought-after feature in smartphones (Lowe 2016;
Agrawal et al. 2016; Hill 2017). Thus, despite growing advo-
cacy and pending legislation affirming consumers’ “right to re-
pair” (The Repair Association 2017; Koebler 2017; Bloomberg
2017), it remains unclear whether consumers truly value the
ability to repair and upgrade devices and to what extent such
enhanced functional durability (defined here as the duration of
time products remain functionally up to date) extends the use
phase in smartphones.

In addition, past work demonstrates that qualities that go
beyond functional aspects can increase the utility a product
provides. For example, displaying a luxury branded shirt can in-
crease a job applicant’s chances of securing a position or a char-
ity representative’s ability to solicit donations from strangers
(Nelissen and Meijers 2011). In such cases, the benefit of wear-
ing the shirt does not stem from its function as a clothing
garment but rather from the social context it provides about
the wearer’s social status and/or character.

Such nonfunctional utility could also impact prices and de-
mand for products in secondary markets. Hendel and Lizzeri
(1999) for example, found that depreciation trends of used cars
were based on perceived brand quality and not based on differ-
ences in physical durability. Sullivan (1998) compared resale
prices of twin automobile pairs to examine the impact of brand
name on deprecation. Twin automobiles are typically made
at the same plant and have the same functional and physical
properties but different brand names (e.g., Ford Thunderbird
and Mercury Cougar). Even though twin models are essentially
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the same, Sullivan found that vehicles sold under the stronger
parent brand maintained value better than their twin counter-
part sold under the weaker brand name. These findings speak
to the role brand name can play in curbing depreciation. Much
like cars, perceptions of brand quality could also affect depre-
ciation trends of used smartphones. Moreover, similar to cars,
smartphones also act as items of conspicuous consumption, al-
lowing consumers to convey their wealth, status, and identity
to others (Thompson and Norton 2011; Goodman and Irmak
2013; Katz and Sugiyama 2006).

In the United States, the two largest manufacturers of smart-
phones, Apple and Samsung, together commanded roughly
70% of the smartphone market, each capturing a similar mar-
ket share (35% in 2017; Haselton, 2017). Yet while Apple is
repeatedly ranked at the top of the list of the world’s most valu-
able brands, Samsung usually falls just outside of the top ten
(Badenhausen 2017). Thus, even though the devices produced
by the two manufacturers are similar enough to justify an ongo-
ing patent infringement lawsuit (Pepitone 2013), they clearly
differ with respect to brand equity.

In addition to other components of the marketing mix such
as advertising and store presence, pricing strategy plays a major
role in shaping brand equity and perception (Yoo et al. 2000).
Specifically, aggressive pricing and sales promotions tend to
have a negative impact on consumer perceptions of brand qual-
ity (Rao and Monroe 1989). As such, Samsung’s aggressive pric-
ing strategies and the discounts it offers on new smartphones
likely reinforce its lower brand positioning compared to Apple,
which tightly controls retail prices of its products and keeps
price drops of new smartphones limited and predictable. Such
differences in brand equity (as well as other intangible qualities)
could affect how long it takes smartphones to reach the end of
their economic life span, namely, the point at which they lose
all value in secondhand markets.

Because longer economic life spans imply longer use phases
and greater resource efficiency, despite relative functional sim-
ilarities (Pepitone 2013), Samsung and Apple smartphones
could have different environmental consequences. Here, we use
market data to examine whether and how intangible qualities
such as brand and newness (i.e., whether the phone is the newest
model available) affect the economic life span of smartphones,
and compare their relative importance of such intangible prop-
erties to that of features such as repairability and memory size,
which presumably prolong functional durability (see table 1 for
detailed definitions).

Methods and Data

To examine the role different product properties play in
shaping the economic life span of smartphones, we collected
detailed information on nearly 500,000 listings of used Apple
and Samsung smartphones sold via eBay.com in the first quarters
of 2015 and 2016. Extracting resale price and detailed device
information for each listing, we calculated the percentage of
overall value each device had lost by the time it was resold
in comparison to its original retail price at the time of launch
(hereafter market depreciation). We then used ordinary least
squares (OLS) regression to formulate market depreciation as a
function of intangible qualities, functional features, and control
variables and estimate the economic life span of Apple and
Samsung smartphones.

We specifically chose to focus on Apple and Samsung smart-
phones for several reasons. First, together the two brands domi-
nate the U.S. market, accounting for 70% of all new smartphone
sales (Haselton 2017). Second, even though neither brand is
particularly well known for its efforts to extend product life
spans, they each produce both models that are relatively easy

Table 1 Predicting variables: Model 1 and model 2

Predictors Description

Brand Binary dummy, Apple/Samsung (1 = Apple; 0 = Samsung)
Newness Binary dummy (yes/no); Is this the newest model on the market from this series? (1 = Yes; 0 = No)
Repairability Composite indicator for random access memory (RAM) and iFixit Repair score (see section 4 in the supporting

information on the Web)
Capacity Capacity (in gigabytes [GB])

Condition Ordinal—on a scale of 1 to 3, when 1 = excellent, and 3 = bad

Control Description
Log-transformed age The natural log of phone age in months

Age: number of months between launch and resale date
Screen Screen size (inches)
Camera Megapixel (MP)
Weight Device weight in grams
Carrier A set of five binary (dummy) variables for each carrier (AT&T, Sprint, T-Mobile, unlocked, and other carriers),

Verizon as the baseline
Free shipping Binary (1 = Yes; 0 = No); based on shipping cost
Seller ranking Binary (1 = Yes; 0 = No); top-rated seller ranking by eBay
Sale type Binary (1 = bid; regular sale = 0)
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to repair and those that are harder to repair (see table S6 in
the supporting information available on the Journal’s website).
Finally, while both manufacturers sell a similar number of new
smartphone devices in the United States, they differ with re-
gard to brand equity (Badenhausen 2017). As such, by analyzing
sales of used Apple and Samsung, we could empirically exam-
ine and compare the effect repairability and brand have on the
economic life span of smartphones in the United States.

The following sections provide a detailed description of data
collection, case selection, variable definitions, and the regres-
sion models employed in our analysis.

Market Depreciation and Economic Life Span

In economics, the equilibrium price of a good is thought
to reflect the good’s overall value. As such, when consumers
lose interest in reusing a product, secondhand market prices
should directly reflect such judgment, and the product is ex-
pected to lose most or all of its economic value. Because eBay
is not a traditional retailer but a diverse marketplace with nu-
merous independent sellers and buyers, many view it as a close
approximation of the central marketplace discussed in classic
economics theory. Subsequently, market prices of goods traded
on eBay are thought to reflect equilibrium prices (Hasker and
Sickles 2010).

Therefore, when a product approaches full market depreci-
ation on eBay and reaches the end of its economic life span,
it is an indication that consumers no longer view it as useful,
and thus it has reached the end of its use phase. This suggests
that, generally, products that depreciate faster have shorter use
phases and shorter life spans compared to products that depre-
ciate at a slower rate and maintain their market value longer.

Data Collection and Assembly

Data were collected over two 10-day periods in April 2015
and April 2016, directly from the eBay.com website using a
software agent. The collection included data on all completed
listings of smartphones described as in “used” condition by sell-
ers, sold within the United States. eBay routinely allows users to
view completed listings (both sold and unsold) that date back
approximately 90 days; thus, our dataset included listings that
appeared on the website during the first quarters of 2015 and
2016.

Resale price (for sold items), shipping, seller rankings (top
rated yes/no), and sale type (auction/regular sale) were retrieved
by a computer agent directly from the relevant rubric on the
eBay website. Specific model and capacity, condition, and cel-
lular provider (e.g., unlocked, AT&T, Verizon) were extracted
from the listing title and accompanying description. Once the
specific phone model was cataloged, U.S. launch date and tech-
nical specifications were added to each listing based on offi-
cial product specification descriptions available online (see the
Variable Selection section below for more). Crossing model and
capacity (e.g., iPhone 4s 16GB), original sales prices were as-
signed and adjusted for inflation based on sale date using the

Consumer Price Index (CPI) calculator (Bureau of Labor Statis-
tics 2017). Phone age (in months) was calculated based on the
time between launch and resale date on eBay. Because phone
age presents time between launch date and resale, it does not
capture intermodel differences in use duration. For example,
an iPhone 6 originally bought from Apple in September 2015
is in use 6 months longer than an identical device bought in
March 2016. However, because most secondary buyers can-
not tell whether a specific device was originally purchased in
September or March, they can only estimate phone age based
on the model’s launch date. As such, we believe that our indi-
cator for phone age reflects the information consumers rely on
when making purchasing decision.

For Apple phones, launch dates and prices were based
on information provided on the company’s official website
(Apple Inc. 2016). For Samsung, prices and dates of release were
retrieved using a historical Google search for official launch no-
tices published. For both brands, when unlocked phone prices
were unavailable, the net cost of a phone purchase was calcu-
lated by subtracting the price of a cellular service package from
the price of a combined service + phone package offered by
AT&T. General statistics and frequencies are presented in ta-
ble S5 and section 6 in the supporting information on the Web.

Case Selection

Once all data were compiled, we manually examined and
corrected inconsistencies (e.g., a mismatch between device
brand and model) and randomly cross-checked cases to verify
that the information retrieved matched the full item descrip-
tion. Of the 784,927 listings retrieved from the website that
resulted in financial transactions (i.e., items that were sold),
all listings were excluded that contained products other than
smartphones, multiple products (several phones), or those for
which we were unable to determine the exact model or memory
capacity (N = 157,044). Of the remaining listings, roughly 86%
were phones by the top two manufacturers, Apple and Samsung,
suggesting that these brands dominated the secondhand market
as well as the retail market for smartphones (Haselton 2017).
Given our specific interest in Apple and Samsung, we chose to
exclusively focus on these two brands in our analysis, limiting
the sample to phone models that included at least 1,000 listings.
Finally, devices that were sold for more than 120% of the orig-
inal retail price (N = 1,853) were excluded from the analysis
(see below for calculation of value maintained), leaving a total
of 494,094 cases in total.

Variable Selection

Dependent Variable—Market Depreciation
Table 1 presents the full list of regression variables and their

operationalization for both regression models 1 and 2. The de-
pendent variable, market depreciation (overall share of value
lost), was calculated for each listed device by dividing the eBay
resale price—the full cost to the consumer calculated as price
paid with shipping—by the U.S. launch retail price (adjusted
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for inflation) of the specific phone model and capacity. Because
most of the smartphone models included in our analysis were
older models that were no longer sold new by the manufacturers
in 2015–2016, we chose to use official retail prices at the time
of launch as our benchmark for depreciation.

MARKET DEPRECIATION = 100%

×
(

1− eBay resale price
U.S. retail launch price

)

(1)

As mentioned previously, the value of a durable good declines
over time. Therefore, we expected that smartphone age would
have a significant impact on its market value. Curve estimation
fit indicated that the relationship between smartphone age and
its secondhand value follows an exponential curve (R2 = 0.91).
To allow for easier interpretation, we use log-transformed age
instead of actual age in our analysis.

Predictors and Control Variables
Because many factors could potentially affect market depre-

ciation and useful life span of smartphones (Kwak et al. 2012),
in addition to phone age, a long list of possible phone proper-
ties was considered (including central processing unit [CPU],
battery size, screen size, camera resolution, weight, talk time,
capacity, and more; see section 2 in the supporting information
on the Web).

Given our specific interest in functional adaptation, memory
size (capacity) and repairability were included in the regression.
Because the ability to maintain, repair, and upgrade a used
device is dependent on several factors, we compiled a composite
repairability indicator, giving equal weight to random access
memory (RAM), and an external repairability score calculated
by iFixit, a company specializing in consumer electronic repair
(see section 2 in the supporting information on the Web for
more). Since neither Apple nor Samsung is particularly well
known for being easy to repair, we first confirmed that there
was variance in repairability scores between the different phone
models both within brands and between brands (see figure S2 in
the supporting information on the Web). Cosmetic condition
(as defined by the seller) was included to account for the phones’
physical wear and tear and brand (Apple or Samsung) and
newness (whether the device was the newest model available
on the market) were added as dummy variables to account for
the impact of intangible properties.

Next, we sought to control for external factors related to
the eBay platform (i.e., seller reputation, free shipping, and sale
type) and cellular network (i.e., carrier) as well as additional
technical product specifications that might affect market depre-
cation of smartphones (e.g., screen size). Since each new phone
model incorporated technological improvements over its prede-
cessors (e.g., larger screen size and enhanced camera resolution),
several potential predictors were found to be highly correlated
with one another (see table S2 in the supporting information
on the Web), introducing the challenge of collinearity. While
collinearity does not reduce the overall predictive capabilities

of the model, it can invalidate results for individual predictors
and produce inflated coefficient and error terms.

Partial least squares (PLS) is a statistical method often used
to overcome collinearity. However, PLS and similar statistical
methods are typically not considered suitable for evaluating the
relative importance of different predictors (Kwak et al. 2012).
Because our main goal was to assess the relative impact of each
predictor and not to find the formula with the best predictive
powers, we chose OLS regression and excluded some collinear
predictors to bypass challenges of collinearity. To determine
which predictors to exclude we relied on theory and gave pref-
erence to predictors that are typically salient at point of sale, as
they were expected to involve lower information asymmetry.

To verify that our main findings were robust to the inclu-
sion of other predicting variables and different variable def-
initions (e.g., seller reputation, see Subramanian and Subra-
manyam (2012)), we repeated the analysis using alternative
regression models (see table S3.1 and section 3 in the support-
ing information on the Web). However, we acknowledge that
other technical properties not included in our regression model
could also affect smartphone depreciation, as we have no rea-
son to believe that they would not be highly correlated with
the salient technical specifications that are included. Hence,
we believe that the unique impact of technical properties that
are missing from our current model is captured by the technical
properties that are included.

Regression Models

Model 1
Using OLS regression, we first formulated market depreci-

ation as a function of intangible qualities, functional features,
and control variables (Model 1; see equation (2)) as outlined
in table 2. Specifically, in model 1, we focused on features that
pertain to functional durability (operationalized as repairability
and capacity) and physical wear and tear (condition), versus
intangible properties (e.g., brand, newness), while controlling
for device age, other technical specifications (e.g., screen size,
camera, weight), and external factors (e.g., carrier, seller repu-
tation) that could also affect resale value.

DEPRECIATION = �i (βi × PREDICTORi )

+� j
(
β j × CONTROL j

) + ε (2)

where predictors are the variables of interest, and control vari-
ables represent other factors that might influence depreciation
(see table 2 for full description). Nominal variables were as-
signed dummy variables (Apple, carrier, free shipping, top-rated
seller, sale type).

Because only 27% of our dataset contained information
on cosmetic condition and cellular carrier, we performed this
regression on the subset of full information cases (roughly
134,500 devices), using the Stata program (version 14). White’s
test revealed heteroscedasticity (chi-square (147) = 4791.6;
p < 0.000), suggesting a strong correlation between explana-
tory variables and the variance in the error term, with larger
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variability in error for newer models compared to older ones.
Therefore, we report robust/white errors for this regression
analysis.

The relative explanatory power of each individual predic-
tor (i.e., R2 change) was assessed using a hierarchal additive
regression model, where variables were added, stepwise, to the
regression model based on their expected importance. While a
different order might alter the relative contribution (in terms of
R2) of each model step, it would not affect the final coefficients
and error statistics for the complete model.

Model 2
Confirming that brand affects market depreciation even

when technical differences are controlled for, we then con-
structed a simpler model predicting market depreciation based
solely on phone brand and age (model 2). To reduce collinear-
ity resulting from inclusion of an interaction term, we used
centered variables to create the interaction between brand and
age.

DEPRECIATION = β1 × BRAND + β2 × log (AGE)

+ β3 × (centered log (AGE) × BRAND)

+ ε (3)

where brand is a dummy variable (Apple = 1, Samsung = 0),
age is the number of months since appearance on the market,

the β variables are the coefficients fitted using OLS, and ε the
error term.

This simplified model offered two important advantages.
First, because information regarding cosmetic condition and
carrier were not required, we were able to expand our database
and include more cases (N = 494,094). Second, it allowed us to
isolate the impact of brand and quantify its impacts on market
depreciation and, subsequently, economic life span in terms of
months. Such quantification could not be performed based on
model 1 because no Samsung and Apple phones have the exact
same configuration that permitted keeping all variables other
than brand constant.

Considering the factors described above, therefore, we used
model 2 to calculate at which age Apple and Samsung smart-
phones approach full depreciation, measured by the loss of 95%
of their original value.

Results

Model 1

Table 2 presents regression results for model 1. Analyzing
all sold listings (i.e., listings that resulted in ownership change)
containing full information on physical condition and cellu-
lar carrier (model 1; N = 134,569), we find that intangibles
(i.e., brand and newness) are at least as important as determi-
nants of market depreciation such as physical wear and tear

Table 2 Market depreciation (as percentage of retail launch price lost) by product properties

Coef.
Robust Std.

Err.
Standardized

coef.
Cumulative

adj. R2 R2 change

Model 1
Dependent variable: % Depreciation
Brand (Apple) –12.15* 0.11 –0.25 0.002*

Newness –4.60* 0.13 –0.07 0.374* 0.373
Repairability 1.63* 0.06 0.05 0.421* 0.047
Capacity –0.02 0.00 –0.02 0.488* 0.067

Condition 4.37* 0.03 0.14 0.520* 0.032

Control variables

ln(age), screen size, camera (MP), weight, cellular carrier, seller ratings, free shipping, sale type,
regression constant

0.868* 0.348

N = 134,569; F (17, 134551) = 41940; Root MSE = 7.20

Model 2
Dependent variable: % Depreciation
Brand (Apple) –8.57* 0.02 –0.20 0.002*

Log-transformed age
(centered)

28.76* 0.04 0.85 0.802* 0.800

Interaction term 2.84* 0.06 0.07 0.804* 0.002

Regression constant 74.16* 0.02

N = 494,094; F(3, 494090) = 99999; Root MSE = 8.56

Notes: *p < .001; cumulative R2 change is the change in adjusted R2 resulting from the addition of the variable or set of variables to the model. MP =
megapixel; MSE = mean squared error.
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(condition) or features related to functional durability (re-
pairability, capacity). Specifically, we find that brand signifi-
cantly impacts depreciation, with Samsung phones losing 12.3
± 0.2% more of their original value compared to otherwise
equivalent age and technically equivalent Apple phones.

Newness is also statistically significant, with new models los-
ing 4.5 ± 0.3% less of their original value compared to otherwise
equivalent yet “older” models. Although it can be argued that
there are functional benefits for carrying the most up-to-date
model, we maintain that even if not specifically represented
in our models as predictors, given that all technical features
examined were highly correlated (see S2 in the supporting in-
formation on the Web), such benefits should be captured by
the technical features already included in model 1 (e.g., screen
size, capacity, camera resolution). Newness, however, reflects
the added value that is not strictly functional, for example, the
hedonic pleasure of owning the latest gadget or the opportunity
to publicly display one’s technological sophistication.

In contrast, all else being equal, phones with the highest
repairability scores and largest memory capacity in our dataset
(128 gigabytes [GB]) lose 2.7 ± 0.3% more of their original
value compared to phones with the lowest repairability scores
and smallest capacity possible (8 GB). Hence, our second find-
ing is that functional durability does not curb depreciation and
might be of lower importance for extending product use phase
compared to brand and other intangible properties. Physical
wear and tear (condition) has a larger impact, with devices
described by sellers as in “bad” condition losing 8.8 ± 0.1%
more of their original value compared to equivalent devices
described as in “excellent” condition. A post hoc analysis re-
vealed no interaction between brand and condition (p = 0.2;
see section 4 in the supporting information on the Web), sug-
gesting that, in this case, wear and tear reflect user behavior and
use intensity more than any deliberate design or manufacturing
choice. Although our model includes some collinear variables,
given the large data sample we use, the high adjusted R2 value
of our model, and the fact that all variables were statistically
significant despite collinearity, we believe our results are still
statistically valid (O’brien 2007).

Our results demonstrate that phone brand has a significant
and meaningful impact on market deprecation. In line with
this finding, all alternative regression models examined led to
similar results (see tables S3.1 through S3.3 in the supporting
information on the Web). Because full market depreciation
signals that a product has reached the end of its economic life,
in theory, model 1 could be used to isolate the effect of brand
and estimate the age at which Samsung and Apple phones are
no longer viable for reuse via secondary markets. Phone models,
however, are not available in all possible configurations (e.g., no
iPhone has an 18-megapixel [MP] camera). As a result, it is not
possible to keep all of the other predictors constant while brand
is isolated because it would violate the ceteris paribus assumption
of our regression. Therefore, to estimate the economic life and
use-phase duration for each brand, we constructed a simpler
model that predicts depreciation as a function of brand and
phone age only (model 2).

Figure 1 Market depreciation per brand by age. Blue dots
represent Apple smartphones, and yellow dots Samsung phones.
Yellow (Samsung) and blue (Apple) trendlines represent market
depreciation as calculated for each brand based on model 2.

Model 2

Results of model 2 (N = 498,326) are presented in table 2.
Consistent with the results of model 1, we find a negative linear
relationship between market depreciation and log-transformed
age, with a significant impact for brand and an interaction
between the two predictors. In this case, market prices indicate
that Samsung smartphones lose value faster and reach the end
of their reuse life span after 54.5 ± 0.2 months, while Apple
smartphones reach it after 66.9 ± 0.6 months (see figure 1).
Hence, our third finding is that brand, an intangible quality,
can have a meaningful impact on prolonging the economic
life span of smartphones, which, in this case, takes the form,
on average, of 12.5 months being added to the use phase. In
summary, because Apple phones are shown to have a longer
use phase than Samsung phones, then for every Apple phone,
one would need roughly 1.23 Samsung phones of similar age,
size, and functional capabilities to deliver the same amount of
utility.

Discussion and Conclusions

This work provides evidence that, despite wide advocacy
for repairability, currently functional durability has, at best,
a marginal impact on the economic life span and use-phase
duration of smartphones. Though the importance consumers
place on repairability might change over time, we found no
evidence for change between the two time periods examined. In
contrast, intangible product properties can affect economic life
spans and therefore the environmental impacts products bear.
Specifically, we find that in the case of smartphones, brand
equity can lead to a 1-year difference in economic life span,
which suggests that phones from stronger brands remain in use
for a longer period of time. Because most of the environmental
impacts associated with smartphones accrue during production,
transport, and EoL, this longer use period means more efficient
use of resources and energy.
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Our findings illustrate that, in general, intangibles might
be better predictors of sustainability in consumer electronics
than repairability, even if the latter seems to fully align with
consumers’ professed attitudes, and provide relevant tools to
overcome product obsolescence. As our findings are based on
nearly half a million sales of used smartphones concluded in a
free market setting over two time periods, we argue that they
more genuinely reflect real-life consumer choices than does
previous work, which was based mostly on consumer surveys
or replacement cycles of new products (Wilhelm et al. 2011;
Wieser et al. 2015; Cooper 2016; Miller et al. 2016). Although
we focus on Apple and Samsung smartphones, given that these
are the clear market leaders in the United States and globally,
we believe our result are representative of the average con-
sumer’s preferences (Kantar Worldpanel 2017; Gartner 2017).
Although other functional features not included in our regres-
sion models could potentially affect depreciation, because func-
tional features tend to be highly correlated with one another
and all alternative models examined led to similar conclusions
(see supporting information on the Web), we expect our main
findings—that repairability is of low importance while brand
plays a key role in depreciation—to hold.

As intangibles play a pivotal role in shaping consumption, a
more accurate attribution of their environmental consequences
could help identify leverage points for enhancing product sus-
tainability. In particular, intangibles might be especially impor-
tant for consumers in secondary markets, which have already
become major venues for product reuse (Deloitte 2016). Past
work suggests that lower socioeconomic agents tend to place
higher importance on status signaling when shopping compared
to agents that are better off economically (Vanden Abeele and
Roe 2013; Charles et al. 2009). Because price is one of the ma-
jor motivators for purchasing electronics secondhand (Guide
and Li 2010), the impact of intangibles might be especially
prominent in identifying consumption patterns of used goods.
In particular, the relationship between brand quality and price
and how it might affect consumer perceptions of purchase risk
in secondary markets might be of particular interest for better
understanding the implications of brand on product reuse. As
the popularity of secondary online markets continues to expand,
the importance of branding and other social status signals for
enhancing reuse and resource efficiency could also increase.

Although the knowledge that brand can affect the economic
life span of products intuitively makes sense, we are unaware of
previous work that has empirically quantified a similar effect in
consumer electronics. These findings put into question the com-
mon practice in life cycle assessment (LCA) of assuming that
all products in the same product category (i.e., phones, cars)
have identical life spans. Recent years have brought about great
improvements in use-phase efficiency of products (e.g., smart-
phones, household appliances, cars). As this trend increases
across product categories, LCA results will become more sen-
sitive to assumptions regarding life span duration, and the im-
portance of accounting for the impact intangibles can have on
product life span will increase. We suggest that market depre-
ciation and economic life spans might provide a practical way

to examine variance in product life spans and improve estimate
accuracy.

This work has several limitations. First, our analysis draws
on sales of used phones executed via eBay, within the United
States. Even though eBay is the largest online market for sec-
ondhand goods, it may not be representative of the market as
a whole. In addition, we include only transactions completed
during the first quarters of 2015 and 2016. Although post hoc
analysis did not reveal any meaningful difference between the
two years, it remains to be seen whether they are representative
of other time periods as well. Moreover, the current analy-
sis does not differentiate among the different components of
the marketing mix (e.g., advertising, retail prices and promo-
tions, new model launch) and the impacts of brand as a whole.
Specifically, because retail prices of smartphones are not static
but change over time, it is possible that differences in pricing
strategies (e.g., discounts, rebates) are also reflected in price
changes in secondary markets. Given that the aim of this work
was to examine whether repairability and functional durability
affects reuse via secondary markets, disentangling the various
components of brand positioning is beyond the scope of this
work. Although a post hoc analysis indicated that depreciation
of used smartphones is not mediated by retail price changes in
primary markets (see section 5 in the supporting information on
the Web), future work should specifically examine whether and
how pricing strategy and the frequency of new model releases
affects supply and demand in secondary markets. In addition,
we could not isolate the impact of operating system usability
and consumer satisfaction from brand (because they were fully
correlated). Although these can fall under intangibles (Joshi
and Hanssens 2010), future work could control for the impact
of operating systems by, for example, comparing depreciation
of different smartphone brands that have an Android operating
system.

Furthermore, relying on cases of sold smartphones does not
account for the share of older devices that were retired and
never offered for resale on eBay. Because the effective market
value of retired devices is zero, this introduces selection bias into
our analysis that likely leads to lower deprecation estimates for
older models. Alternatively, it is possible that the best phones
are seldom offered for sale in secondary markets such as eBay be-
cause owners never see the need to replace them. For example,
it is possible that owners of modular phones, that have the abil-
ity to endlessly update the functional capabilities and cosmetic
appearance of their devices, do not replace their smartphones
before they reach their physical end of life, at which point they
have no market value. Here, we focused solely on smartphone
models with high resales volumes, so it is possible that our data
sample does not contain the smartphone models that preserve
value best. Therefore, it could be argued that our data represent a
“market for lemons,” where sellers are interested only in passing
on lower-quality goods (Akerlof 1970) to others. Nonetheless,
if indeed secondary markets are full of lemons, it is reasonable to
assume that repairability would be highly valued in this market,
as it would somewhat mitigate the risk of purchasing a useless
device. However, because all smartphone models sold by the
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two brands were represented in our dataset, there is no reason
to assume that the market for lemons hypothesis would affect
one brand more than the other. Future work could examine the
ratio between sold and unsold listings using market demand to
estimate the real EoL.

In addition, our results regarding repairability are sensitive
to the way we chose to operationalize it based on iFixit scores
and internal memory. It is possible that a different definition of
repairability would have led to different results. Furthermore,
neither Apple nor Samsung are particularly well known for
their efforts to enhance smartphone life span. Thus, although
repairability scores varied among the different phone models
examined (see figure S2 in the supporting information on the
Web), it is possible that consumers were unaware of the fact
that some phones are easier to repair than others. Because re-
pairability scores are not commonly advertised, it remains un-
clear whether given sufficient information regarding product
repairability and functional durability in general, economic life
span of more functionally durable models would increase. Fu-
ture work should examine the effect of making repairability
information more salient to consumers.

Moreover, consumers that have a special interest in re-
pairability and know about repairability scores of different mod-
els might choose to purchase devices that are designed (and
marketed) to address these issues. Because we focus only on
the two big brands, our dataset does not include the manu-
facturers that cater specifically to environmentally conscious
consumers, such as Fairphone. Nonetheless, as sustainability-
focused smartphones are still a niche market—for example, total
Fairphone devices sold amounts to less than 0.01% of smart-
phone sales in the United States (Hill 2017)—they are likely
not as representative of general consumer preferences as Apple
and Samsung, who jointly command over 70% of the U.S. mar-
ket (Kantar Worldpanel 2017). Finally, although smartphones
are ubiquitous, research suggests that consumers might have es-
pecially strong emotions toward their devices (Melumad and
Pham 2018) and thus the extent to which smartphones are
representative of other consumer products should be explicitly
tested.

Our findings underscore that a narrow focus on technical as-
pects such as repairability is likely to fall short of achieving the
desired outcome of longer life spans for smartphones and con-
sumer electronics in general. Furthermore, these findings high-
light the importance of considering the consequences of intan-
gibles when assessing the environmental impacts of consumer
products. Although we focus on the case study of smartphones,
our approach is generally applicable and could be selected to
examine other consumer products and different intangibles be-
yond brand and newness. Future work should focus on products
that have a strong secondary market and a wider range of pos-
sible configurations such as automobiles, which might prove a
good fit for estimations based on regression results. While more
work is needed to pinpoint under what circumstances brand
and other intangibles could be harnessed to promote sustain-
able consumption, strategies aimed at slowing down obsoles-

cence rates of consumer-facing products would likely benefit
from considering creative ways to incorporate them.
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in consumer electronics: Economic and environmental implica-
tions. Journal of Industrial Ecology 20(5): 1018–1024.

Aker, J. C. and I. M. Mbiti. 2010. Mobile phones and economic devel-
opment in Africa. Journal of Economic Perspectives 24(3): 207–232.

Akerlof, G. A. 1970. The market for “lemons”: Quality uncertainty
and the market mechanism. Quarterly Journal of Economics. 84(3):
488–500.

Allwood, J. M., J. M. Cullen, M. A. Carruth, D. R. Cooper, M. McBrien,
R. L. Milford, M. C. Moynihan, and A. C. Patel. 2012. Sustainable
materials: With both eyes open. Cambridge: UIT Cambridge.

Apple Inc. 2014. iPhone 6 Enviromental Report. Official Apple web-
site. www.apple.com/environment/reports/docs/iPhone6_PER_
Sept2014.pdf. Accessed July 9, 2018.

Apple Inc. 2016. Timeline of iPhone models. Apple.com: Press Re-
lease Library. www.apple.com/newsroom/archive/iphone/. Ac-
cessed June 7, 2018.

Badenhausen, K. 2017. Apple heads the world’s most valuable brands
of 2017 at $170 billion. Forbes, May 23. www.forbes.com/sites/
kurtbadenhausen/2017/05/23/apple-heads-the-worlds-most-valu
able-brands-of-2017-at-170-billion/#1adf0f0f384b. Accessed July
30, 2018.

Bellezza, S., J. M. Ackerman, and F. Gino. 2017. “Be careless with
that!” Availability of product upgrades increases cavalier behavior
toward possessions. Journal of Marketing Research 54(5): 768–784.

Benton, D., E. Coats, and J. Hazell. 2015. A circular economy for smart
devices: Opportunities in the US, UK and India. Report by Green
Alliance, London. London, UK: Green Alliance.

Bloomberg, J. 2017. John Deere’s digital transformation runs afoul
of right-to-repair movement. Forbes. www.forbes.com/sites/
jasonbloomberg/2017/04/30/john-deeres-digital-transformation-
runs-afoul-of-right-to-repair-movement/#3140a28a5ab9. Acce-
ssed July 30, 2018.

Broadband Commission for Digital Development. 2016. The state
of broadband 2016: Broadband catalyzing sustainable development.
Geneva, Switzerland: United Nations Educational, Scientific and
cultural Organization.

Makov et al., What Affects the Secondhand Value of Smar tphones 557

https://www.apple.com/environment/reports/docs/iPhone6_PER_Sept2014.pdf
https://www.apple.com/environment/reports/docs/iPhone6_PER_Sept2014.pdf
https://www.apple.com/newsroom/archive/iphone/
https://www.forbes.com/sites/kurtbadenhausen/2017/05/23/apple-heads-the-worlds-most-valuable-brands-of-2017-at-170-billion/#1adf0f0f384b
https://www.forbes.com/sites/kurtbadenhausen/2017/05/23/apple-heads-the-worlds-most-valuable-brands-of-2017-at-170-billion/#1adf0f0f384b
https://www.forbes.com/sites/kurtbadenhausen/2017/05/23/apple-heads-the-worlds-most-valuable-brands-of-2017-at-170-billion/#1adf0f0f384b
https://www.forbes.com/sites/jasonbloomberg/2017/04/30/john-deeres-digital-transformation-runs-afoul-of-right-to-repair-movement/#3140a28a5ab9
https://www.forbes.com/sites/jasonbloomberg/2017/04/30/john-deeres-digital-transformation-runs-afoul-of-right-to-repair-movement/#3140a28a5ab9
https://www.forbes.com/sites/jasonbloomberg/2017/04/30/john-deeres-digital-transformation-runs-afoul-of-right-to-repair-movement/#3140a28a5ab9


R E S E A R C H A N D A N A LYS I S

Bureau of Labor Statistics. 2017. CPI inflation calculator.
https://data.bls.gov/cgi.bin/cpicalc.pl. Accessed September 6,
2017.

Charles, K. K., E. Hurst, and N. Roussanov. 2009. Conspicuous con-
sumption and race. Quarterly Journal of Economics 124(2): 425–
467.

Chen, A. M., K. N. Dietrich, X. Huo, and S. M. Ho. 2011. Develop-
mental neurotoxicants in e-waste: An emerging health concern.
Environmental Health Perspectives 119(4): 431–438.

Cooper, D. R. and T. G. Gutowski. 2017. The environmental impacts
of reuse: A review. Journal of Industrial Ecology 21(1): 38–56.

Cooper, T. 2016. Longer lasting products: Alternatives to the throwaway
society. New York, NY: CRC Press.

Corbett, S. 2008. Can the cellphone help end global poverty. The New
York Times, April 13, MM34.

Davies, R. and S. Cunningham. 2012. A review of online trading and
user perceptions of usability & trust. Journal of Advanced Internet
of Things 1(1): 1–23.

Deloitte. 2016. Technology, media and telecommunications pre-
dictions. In Used smartphones: The $17 billion market you
may never have heard of. Produced by The Creative Studio
at Deloitte, London. https://www2.deloitte.com/gi/en/pages/
technology-media-and-telecommunications/articles/tmt-predic
tions.html. Accessed July 30, 2018.

Felton, A. and E. Bird. 2006. Design for recyclability: Product func-
tion, failure, repairability, recyclability and disposability. Paper
presented at Geotechnical and Environmental Aspects of Waste
Disposal Sites: Proceedings of the 4th International Symposium
on Geotechnics Related to the Environment-GREEN 4, Wolver-
hampton, UK, 28 June–1 July 2004.

Frey, S. D., D. J. Harrison, and E. H. Billett. 2006. Ecological footprint
analysis applied to mobile phones. Journal of Industrial Ecology
10(1–2): 199–216.

Gartner, I. 2017. Gartner says worldwide sales of smartphones grew 7
percent in the fourth quarter of 2016. Egham, UK: Gartner, Inc.

Gavazza, A., A. Lizzeri, and N. Roketskiy. 2014. A quantitative analysis
of the used-car market. American Economic Review 104(11): 3668–
3700.

Geyer, R. and V. D. Blass. 2010. The economics of cell phone reuse and
recycling. International Journal of Advanced Manufacturing Tech-
nology 47(5–8): 515–525.

Ghose, A., M. D. Smith, and R. Telang. 2006. Internet exchanges for
used books: An empirical analysis of product cannibalization and
welfare impact. Information Systems Research 17(1): 3–19.

Gnanapragasam, A., M. Oguchi, C. Cole, and T., Cooper. 2017. Con-
sumer expectations of product lifetimes around the world: A re-
view of global research findings and methods. In Product Lifetimes
and the Environment 2017 – Conference Proceedings, edited by C.
Bakker and R. Mugge, 464–469. Delft University of Technoloy
and IOS Press.

Go, T. F., D. A. Wahab, and H. Hishamuddin. 2015. Multiple gen-
eration life-cycles for product sustainability: The way forward.
Journal of Cleaner Production 95: 16–29.

Grant, K., F. C. Goldizen, P. D. Sly, M. N. Brune, M. Neira, M. van den
Berg, and R. E. Norman. 2013. Health consequences of exposure
to e-waste: A systematic review. Lancet Global Health 1(6): E350–
E361.

Guide, J. V. D. R. and J. Li. 2010. The potential for cannibalization of
new products sales by remanufactured products. Decision Sciences
41(3): 547–572.

Haselton, T. 2017. Samsung retakes top spot from Apple in US smart-
phone market, Kantar says. CNBC. www.cnbc.com/2017/08/09/
samsung-retakes-top-spot-from-apple-in-us-smartphones-kantar-
says.html. Accessed July 30, 2018.

Hasker, K. and R. Sickles. 2010. eBay in the economic literature: Anal-
ysis of an auction marketplace. Review of Industrial Organization
37(1): 3–42.

Hendel, I. and A. Lizzeri. 1999. Adverse selection in durable goods
markets. American Economic Review 89(5): 1097–1115.

Hill, S. 2017. Fairphone has sold 125,000 modular phones and is rolling
out Android 6.0. Digital Trends: Designtechnica Corporation.
www.digitaltrends.com/mobile/fairphone-mwc17/. Accessed July
30, 2018.

Jacoby, J., C. K. Berning, and T. F. Dietvorst. 1977. What about dis-
position? Journal of Marketing 41(2): 22–28.

Goodman, J. K. and C. Irmak. 2013. Having versus consuming: Failure
to estimate usage frequency makes consumers prefer multifeature
products. Journal of Marketing Research 50(1): 44–54.

Joshi, A. and D. M. Hanssens. 2010. The direct and indirect effects
of advertising spending on firm value. Journal of Marketing 74(1):
20–33.

Kantar Worldpanel. 2017. Samsung back to #1 in the US, but
share is down. Kantar Worldpanel. www.kantarworldpanel.com/
global/News/Samsung-back-to-1-in-the-US-but-share-is-down.
Accessed February 28, 2018.

Katz, J. E. and S. Sugiyama. 2006. Mobile phones as fashion statements:
Evidence from student surveys in the US and Japan. New Media
and Society 8(2): 321–337.

Koebler, J. 2017. Five states are considering bills to legalize
the “right to repair” electronics. https://motherboard.vice.com/
en_us/article/mg7nbv/five-states-are-considering-bills-to-legalize-
the-right-to-repair-electronics. Accessed May 22, 2017.

Kwak, M., H. Kim, and D. Thurston. 2012. Formulating second-
hand market value as a function of product specifications,
age, and conditions. Journal of Mechanical Design 134(3):
032001–032001.

Lee, T. and S. Liao. 2015. Mental account matters in planning C2C
on-line resale: The influnece of endowment effect. In Proceedings
of the 2010 Academy of Marketing Science (AMS) Annual Confer-
ence, edited by D. R. Deeter-Schmelz. Basel, Switzerland: Springer
International Publishing.

Lowe, M. 2016. Are modular phones the shape of things to come? the-
guardian.com. The Guardian. www.theguardian.com/technology/
2016/jul/10/modular-smartphones-future. Accessed July 30, 2018.

MacArthur, E. 2013. Towards the circular economy: economic and business
rationale for an accelerated transition. Cowes, UK: Ellen MacArthur
Foundation.

Makov, T. and D. Font Vivanco. 2018. Does the circular economy
grow the pie? The case of rebound effects from smartphone reuse.
Frontiers in Energy Research 6(39).

Melumad, S. and M. T. Pham. 2018. Understanding the psychology
of smartphone use: The adult pacifier hypothesis. Columbia Uni-
versity working paper.

Miller, T. R., H. Duan, J. Gregory, R. Kahhat, and R. Kirchain. 2016.
Quantifying domestic used electronics flows using a combination
of material flow methodologies: A US case study. Environmental
Science & Technology 50(11): 5711–5719.

Moran, D., D. McBain, K. Kanemoto, M. Lenzen, and A. Geschke.
2015. Global supply chains of coltan. Journal of Industrial Ecology
19(3): 357–365.

558 Journal of Industrial Ecology

https://data.bls.gov/cgi.bin/cpicalc.pl
https://www2.deloitte.com/gi/en/pages/technology-media-and-telecommunications/articles/tmt-predictions.html
https://www2.deloitte.com/gi/en/pages/technology-media-and-telecommunications/articles/tmt-predictions.html
https://www2.deloitte.com/gi/en/pages/technology-media-and-telecommunications/articles/tmt-predictions.html
https://www.cnbc.com/2017/08/09/samsung-retakes-top-spot-from-apple-in-us-smartphones-kantar-says.html
https://www.cnbc.com/2017/08/09/samsung-retakes-top-spot-from-apple-in-us-smartphones-kantar-says.html
https://www.cnbc.com/2017/08/09/samsung-retakes-top-spot-from-apple-in-us-smartphones-kantar-says.html
https://www.digitaltrends.com/mobile/fairphone-mwc17/
https://www.kantarworldpanel.com/global/News/Samsung-back-to-1-in-the-US-but-share-is-down
https://www.kantarworldpanel.com/global/News/Samsung-back-to-1-in-the-US-but-share-is-down
https://motherboard.vice.com/en_us/article/mg7nbv/five-states-are-considering-bills-to-legalize-the-right-to-repair-electronics
https://motherboard.vice.com/en_us/article/mg7nbv/five-states-are-considering-bills-to-legalize-the-right-to-repair-electronics
https://motherboard.vice.com/en_us/article/mg7nbv/five-states-are-considering-bills-to-legalize-the-right-to-repair-electronics
https://www.theguardian.com/technology/2016/jul/10/modular-smartphones-future
https://www.theguardian.com/technology/2016/jul/10/modular-smartphones-future


R E S E A R C H A N D A N A LYS I S

Nelissen, R. M. A. and M. H. C. Meijers. 2011. Social benefits of luxury
brands as costly signals of wealth and status. Evolution and Human
Behavior 32(5): 343–355.

O’brien, R. M. 2007. A caution regarding rules of thumb for variance
inflation factors. Quality & Quantity 41(5): 673–690.

O’Connor, M. P., J. B. Zimmerman, P. T. Anastas, and D. L. Plata.
2016. A strategy for material supply chain sustainability: Enabling
a circular economy in the electronics industry through green en-
gineering. ACS Sustainable Chemistry & Engineering 4(11): 5879–
5888.

OECD. 2010. Materials case study 1: Critical metals and mobile de-
vices: OECD Environment Directorate. Paris, France: OECD
Publishing.

Ovchinnikov, A., V. Blass, and G. Raz. 2014. Economic and environ-
mental assessment of remanufacturing strategies for product +
service firms. Production and Operations Management 23(5): 744–
761.

Pepitone, J. 2013. Apple vs. Samsung scorecard. In Apple and
Samsung’s fiercest battle isn’t playing out in the smartphone market.
money.cnn.com: CNN. https://money.cnn.com/2013/08/08/tech
nology/mobile/apple-samsung-timeline/index.html. Accessed
July 30, 2018.

Rao, A. R. and K. B. Monroe. 1989. The effect of price, brand name,
and store name on buyers’ perceptions of product quality: An
integrative review. Journal of Marketing Research 26(3): 351–357.

Raz, G., A. Ovchinnikov, and V. Blass. 2017. Economic, environmen-
tal, and social impact of remanufacturing in a competitive setting.
IEEE Transactions on Engineering Management 64(4): 476–490.

The Repair Association . 2017. https://repair.org/. Accessed May 22
2017.

Skelton, A. C. and J. M. Allwood. 2013. Product life trade-offs: What
if products fail early? Environmental Science & Technology 47(3):
1719–1728.

Sprecher, B., I. Daigo, S. Murakami, R. Kleijn, M. Vos, and G. J.
Kramer. 2015. Framework for resilience in material supply chains,
with a case study from the 2010 rare earth crisis. Environmental
Science & Technology 49(11): 6740–6750.

Sprecher, B., I. Daigo, W. Spekkink, M. Vos, R. Kleijn, S. Murakami,
and G. J. Kramer. 2017. Novel indicators for the quantification
of resilience in critical material supply chains, with a 2010 rare
earth crisis case study. Environmental Science & Technology 51(7):
3860–3870.

Subramanian, R. and R. Subramanyam. 2012. Key factors in the market
for remanufactured products. Manufacturing & Service Operations
Management 14(2): 315–326.

Sullivan, M. W. 1998. How brand names affect the demand
for twin automobiles. Journal of Marketing Research 35(2):
154–165.

Thomas, V. M. 2011. The environmental potential of reuse: An appli-
cation to used books. Sustainability Science 6(1): 109–116.

Thompson, D. V. and M. I. Norton. 2011. The social utility of feature
creep. Journal of Marketing Research 48(3): 555–565.

van Nes, N. and J. Cramer. 2005. Influencing product lifetime through
product design. Business Strategy and the Environment 14(5): 286–
299.

Vanden Abeele, M. and K. Roe. 2013. Adolescents’ school ex-
perience and the importance of having a “cool” mobile
phone: Conformity, compensation and resistance? Poetics 41(3):
265–293.
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Wieser, H., N. Tröger, and R. Hübner. 2015. The consumers’ desired
and expected product lifetimes. Paper presented at Product Life-
times and the Environment, Conference Proceedings Notting-
ham, PLATE Conference.

Wilhelm, W., A. Yankov, and P. Magee. 2011. Mobile phone
consumption behavior and the need for sustainability innova-
tions. Journal of Strategic Innovation and Sustainability 7(2): 20–
40.

Wilson, G. T., G. Smalley, J. R. Suckling, D. Lilley, J. Lee, and
R. Mawle. 2017. The hibernating mobile phone: Dead stor-
age as a barrier to efficient electronic waste recovery. Waste
Management 60: 521–533.

Yoo, B., N. Donthu, and S. Lee. 2000. An examination of selected
marketing mix elements and brand equity. Journal of the Academy
of Marketing Science 28(2): 195.

Yu, S., Q. Yang, J. Tao, X. Tian, and F. Yin. 2011. Product modular
design incorporating life cycle issues: Group Genetic Algorithm
(GGA) based method. Journal of Cleaner Production 19(9–10):
1016–1032.

Zhang, W. H., Y. X. Wu, and M. O. Simonnot. 2012. Soil con-
tamination due to e-waste disposal and recycling activities: A
review with special focus on China. Pedosphere 22(4): 434–
455.

Zink, T., F. Maker, R. Geyer, R. Amirtharajah, and V. Akella. 2014.
Comparative life cycle assessment of smartphone reuse: Repurpos-
ing vs. refurbishment. International Journal of Life Cycle Assessment
19(5): 1099–1109.

Supporting Information

Supporting information is linked to this article on the JIE website:

Supporting Information S1: This supporting information provides sections on smartphone market share, variable specifi-
cations, alternative regression models, moderation analysis for condition, retail price changes and depreciation in secondary
markets, and data summary.

Makov et al., What Affects the Secondhand Value of Smar tphones 559

https://money.cnn.com/2013/08/08/technology/mobile/apple-samsung-timeline/index.html
https://money.cnn.com/2013/08/08/technology/mobile/apple-samsung-timeline/index.html
https://repair.org/

